| | o. of Candidate: _
IISTRY | (Intermediate Part | t-L. Class 11 | (th) 322 - ([[]) | I) Paper I | (Group - 1) | |------------|---|--|--|--|------------------------------|--| | (*) | 20 Minutes | <u>OBJECTIVE</u> | | | • | | | Note: Y | ou have four choices | s for each objective type question number. Usero mark in that question | uestion as A, B
se marker or pe | R, C and D. The
en to fill the circ | les. Cutting or fil | u think is correct,
lling two or more | | _ | An aqueous soluti (A) equal to that (C) more than the The unit of the rat (A) first Amorphous solids (A) have sharp m (B) undergo clea (C) have perfect (D) can possess s In endothermic rea (A) products is m (C) surroundings | on of ethanol in water may of water at of water at of water the constant is the same as the same at the same as the same at th | (B) (D) that of the rate (C) knife rrangement of the (B) (D) | equal to that of less than that of reaction in zero atoms reactants is more reactants and | of ethanol
of water | products | | 6 - | (A) 7f | (B) 7s me energy are called | (C) | | (D) 7d | | | 7 - | (A) hybrid orbitaSolvent extraction(A) distribution l | ds (B) valence orb
is controlled byaw (B) Newton's la | oitals (C) | | itals (D) d-or | | | 8 -
9 - | (A) 1.008 mg
VSEPR theory wa | nole of electrons is (B) 0.55 mg as developed by | • | 0.184 mg | (D) 1.67 | 73 mg | | | (A) decreases ray
An excess of aque | Gillespie
s not used between two ha
pidly (B) decreases sl
cous silver nitrate is added | (D) alf cells, then to lowly (C) to aqueous be | does not chang
arium chloride | Gillespie

ge (D) drop | s to zero | | 10 | (A) Ag ⁺ and NO
(C) Ba ⁺² and NO | O_3^- only | (B)
(D) | Ag ⁺ and Ba ⁺²
Ba ⁺² and NO | | | | 12 - | (A) is taken in le(B) is taken in le(C) gives the magnetic factoring | at is the one whichesser quantity in gm as contesser quantity in volume and aximum amount of the proinimum amount of the proinimum amount of the proinimum amount of the professional section. | ompared to oth
as compared to
oduct which is | o the other reac
s required | tants | | | 13 - | (A) water | ed as drying agent in a de (B) CaCl ₂ hybridization. | esiccator. (C) | silica gel | (D) phosp | horus pentoxide | | 14 - | (A) sp ² | (B) sp ³ methane and oxygen are n | (C) | sp | (D) sp^3c | d | | | (A) $\frac{1}{3}$ | (B) $\frac{8}{9}$ | (C) | $\frac{1}{9}$ | (D) $\frac{16}{17}$ | | | 16 - | $(A) -10^{\circ}C$ and | a gas from ideal behaviou 5.0 atm (B) -10°C and | 2.0 atm (C) | 100° C and 2.0 |) atm (D) 0°C | and 2.0 atm | | 17 - | is a pseu
(A) CaF ₂ | ido solid. (B) glass | (C) | NaCl | (D) sug | | | | ¥ | y | / | | 215-(III) | -3 <i>22</i> -31000 | e les **CHEMISTRY** (Intermediate Part-I, Class 11th) 322 Paper I (Group - I) Time: 2:40 Hours SUBJECTIVE GUZG1-22 Marks: 68 Note: Section I is compulsory. Attempt any THREE (3) questions from Section II. #### (SECTION - I) ### 2. Write short answers to any EIGHT questions. $(2 \times 8 = 16)$ - i What is molecular ion? Write down formulas of any two of these ions. - ii Differentiate between empirical and molecular formula. - iii Mg (Magnesium) atom is twice heavier than C (Carbon) atom. Justify. - iv How crystals are dried in vacuum desiccator? - v What is R_f value? Why does it has no units? - vi What is partition chromatography? - vii Convert -40 °C into Fahrenheit scale. - viii Define absolute zero temperature. - ix "Water vapours do not behave ideally at 273 K". Explain it. - x What is Le-chatelier's principle? - xi Define solubility product. xii - Prove that $$Ka = \frac{[H_3 O^+][A^-]}{[HA]}$$. ## 3. Write short answers to any EIGHT questions. $(2 \times 8 = 16)$ - i Boiling needs a constant supply of heat. Give reason. - ii The vapour pressures of solids are far less than those of liquids. Why? - iii Define symmetry. Give its elements. - iv What are ionic solids? Give two examples. - v Whichever gas is used in the discharge tube, the nature of cathode rays remains the same. Why? - vi What is the origin of line spectrum? - vii State Pauli's exclusion principle. - viii Write down names of two spectral series alongwith their regions. - ix The concentration in terms of molality is independent of temperature but molarity depends upon temperature . Why? - x Define hydrolysis. Give an example. - xi What is activated complex? - xii What is half-life period? Give an example. ## 4. Write short answers to any SIX questions. $(2 \times 6 = 12)$ - i Write Lewis structures of i) CCl₄ ii) HCN - ii Why Noble gases don't form chemical bonds? - iii O2 shows paramagnetic behavior; why? - iv Why CH₄ does not form co-ordinate covalent bond but H₂O can form? - v Is it true that non spontaneous process never happens in the universe? - vi What does the symbol ΔH_n^0 denote? Define this quantity. - vii Burning of candle is spontaneous process; brief it. - viii What is difference between primary and secondary cell? - ix SHE acts as cathode when connected with zinc; why? (Turn Over) # (SECTION - II) GUZ-41-22 | Note: Attempt any THREE (3) questions from Section II | | |---|------------------------| | (a) Define yield. How theoretical and practical yield can be calculated?(b) Define quantum numbers. Explain azimuthal quantum number in detail. | (1+3)
(1+3) | | 6. (a) Calculate the density of CH ₄ (g) at 0°C and 1 atm pressure. What happens to density if the pressure is increased to 2 atm at 0°C? | the (4) | | (b) Explain the construction of lead accumulator. Give its discharging process. | (4) | | 7. (a) Draw the molecular orbital diagram for O ₂ and explain its paramagnetic beha (b) How the enthalpy of a reaction can be measured by using glass calorimeter? | aviour. (2+2)
(3+1) | | 8. (a) What are London forces? Write down factors affecting them. (b) Calculate the pH of a buffer solution in which 0.11 molar CH₃COONa and 0.09 molar acetic acid solution are present. K_a for CH₃COOH is 1.85 x 10⁻⁵. | (1+3)
(1+1+1+1) | | 9. (a) Differentiate betweeni) Ideal and non-ideal solutions.ii) Hydration and hydrolysis | (2+2) | | (b) Define catalysis. Explain its types with suitable examples. | (1+3) | | | 215-322-31000 | | Da | II No | of Candidate: | | | |-----|-------------------------|--|---|--| | | | STRY (Intermediate Part-I, Clas | s 11 th) 322 - (IV) | Paper I (Group - II) | | | | 0 Minutes OBJECTIVE | | | | Not | te: You
fill
cire | u have four choices for each objective type question as
that circle in front of that question number. Use marker
cles will result in zero mark in that question. Attempt
er and leave others blank. | A, B, C and D. The choice or pen to fill the circles. C | e which you think is correct
Cutting or filling two or more | | 1. | 1 - | The pH of 10 ⁻³ mol.dm ⁻³ of an aqueous solution of | f H ₂ SO ₄ is | | | | | (A) 1.5 - (B) 2.0 | (C) 3.0 | (D) 2.7 | | | 2 - | substance is used as decolourizing agent in | | | | | | (12) | (C) CaCl ₂ | (D) H_2SO_4 | | | | Bohr model of atom is contradicted by | (D) 1-1-4/ | ttan | | | | (A) planks quantum theory | (B) dual nature of mat
(D) all of these | itter | | | | (C) Heisenberg's uncertainty principle | | | | | | When water freezes at O°C its density decreases due | (B) changes bond leng | oth | | | | (A) cubic structure of ice(C) empty spaces present in structure of ice | (D) changes bond ang | | | | | The largest number of molecules are present in | | | | | ij - | (A) $3.6 \text{ g of } \text{H}_2\text{O}$ (B) $4.8 \text{ g of } \text{C}_2\text{H}_5\text{OH}$ | $\sqrt{(C)}$ 2.8 g of CO | (D) $5.4 \text{ g of } N_2O_5$ | | | 6 - | An aqueous solution of ethanol in water may have ve | | | | | | (A) equal to that of water | (B) more than that of | fwater | | | | (C) equal to that of ethanol | (D) less than that of | water | | | 7 - | is a pseudo solid. | | m) viai | | | | (A) glass (B) CaF ₂ | (C) NaCl | (D) HCl | | | 8 - | Orbitals having same energy are called | | 1. (D) valonce orbitale | | | | (A) degenerate orbitals (B) S and P orbitals | (C) molecular orbital | ls (D) valence orbitals | | | 9 - | In Sp ³ hybrid orbital "S" character is | (C) \\75% | (D) 100% | | | 10.10 | (A) 25% (B) 50% | ` ' | (D) 10070 | | | | Number of molecules in one drh ³ of water is close to (A) $\frac{6.02}{22.4} \times 10^{23}$ (B) $\frac{12.04}{22.4} \times 10^{23}$ | (C) $\frac{18}{22.4} \times 10^{23}$ | (D) $55.6 \times 6.02 \times 10^{23}$ | | | 11 - | Solvent extraction is an equilibrium process and is c | controlled by | (D) was a facility | | | | (A) law of mass action (B) amount of solvent use | d (C) distribution law | (D) amount of solute | | | 12 - | If the rate equation of a reaction 2 A+B \rightarrow pro | educts is, rate $= K[A]$ | [B] and A is present | | | | in large excess then order of reaction is | (C) 2 | (D) 4 | | | | (A) 1 (B) 2 | (C) 3 | (D) 4 | | | 13 - | The number of bonds in nitrogen molecule is (A) one σ and one π (B) one σ and two π | (C) three sigma only | (D) two σ and one π | | | | How many subatomic particles are thought to exist | in an atom. | (-) | | | 14 - | | (C) 50 | (D) 100 | | | 15 | Stronger the oxidizing agent greater is the | | , , | | | 15 - | (A) redox potential (B) E.M.F. of cell | (C) oxidation potentia | d (D) reduction potential | | | 16 -/ | The molar volume of CO ₂ is maximum at(A) STP (B) 127° C and 1 atm | _ | | | | | (A) STP (B) 127° C and 1 atm | (C) $O^{\circ}C$ and 2 atm | \setminus (D) 273 $^{\circ}$ C and 2 atr | | | 17- | For the reaction NaOH + HCl | the enthalpy change is ca | alled | | / | / | (A) heat of reaction (B) heat of formation | (C) heat of neutraliza | ation (D) heat of combustio | | | | | | 216-(IV)-322 -31000 | **CHEMISTRY** (Intermediate Part-I, Class 11th) 322 Paper I (Group - II) Time: 2:40 Hours **SUBJECTIVE** Marks: 68 Note: Section I is compulsory. Attempt any THREE (3) questions from Section II. #### (SECTION - I) #### 2. Write short answers to any EIGHT questions. $(2 \times 8 = 16)$ - i What is mass spectrum? - ii One mole of H₂SO₄ should completely react with two moles of NaOH. How does Avogadro's number help to explain it? - iii Define limiting reactant. Give an example. - iv Write down the names of any four major steps involved in drystallization. - v What is ether extraction? - vi What is paper chromatography? Name its two types. - vii What is mean square velocity? - viii Where is plasma found? - ix Derive Charle's law from kinetic molecular theory of gases. - x What is common ion effect? Give an example. - xi Write down the Henderson's equation to determine the pH of a buffer solution. - xii Define solubility product. Give an example. ## 3. Write short answers to any EIGHT questions. $(2 \times 8 = 16)$ - i Ionic crystals are highly brittle. Justify it. - ii Cleavage of the crystals is itself anisotropic behaviour. Justify it. - iii Diamond is hard and an electrical insulator. Justify it, - iv Boiling needs a constant supply of heat. Justify it. - v How the C_{29}^{65} can be converted into C_{30}^{66} . - vi What is Zeeman effect? - vii Define Moseley's law and give its relationship/equation. - viii Define Pauli's exclusion principle. - ix Define parts per million (PPM) and give its expression. - x Define critical solution temperature and give an example. - xi What is catalytic poisoning? Give an example. - xii Define catalysis and give two examples of catalysed reactions. ## 4. Write short answers to any SIX questions. $(2 \times 6 = 12)$ - i Why the molecules of BF₃ are triangular planar? - ii Define covalent radius. Give one example. - iii Define shielding effect. How it varies across the period? - iv Define coordinate covalent bond Give one example. - v Differentiate between endothermic and exothermic reaction. - vi What is lattice energy? Give one example. - vii Enthalpy of neutralization of a strong acid and a base is always -57.5 K cal mole⁻¹. Why? - viii Calculate the oxidation number of chromium in the following compounds: - a) CrO₃ - b) Cr₂O₃ - ix Define oxidation state. Give example. (Turn Over) ## (SECTION - II) # Note: Attempt any THREE (3) questions from Section II.. 445-92-22 | 5. | (a) Explain the concept of limiting reactant with a suitable example. | 1+1+2 (4) | |----|--|---------------| | | Also write down steps to identify a limiting reactant. | | | | (b) Define quantum numbers and explain in detail azimuthal quantum number. | 1+3 (4) | | 6. | (a) 250 cm ³ of the sample of hydrogen effuses four times as rapidly as 250 cm ³ | (4) | | | of an unknown gas. Calculate the molar mass of unknown gas. | | | | (b) Discuss any two industrial importance of electrolytic process. | (4) | | 7. | (a) Explain the geometry of NH ₃ using hybridization. | 3+1 (4) | | | (b) State and explain Hess's law of constant heat summation with an example. | 1+3 (4) | | | | | | 8. | (a) Brief about structure of ice. | (4) | | | (b) Calculate the pH of buffer solution in which 0.11 M CH ₃ COONa and | (4) | | | 0.09 M CH ₃ COOH solutions are present while ka for CH ₃ COOH is 1.85 x 10 ⁻³ | | | 9. | (a) What is solubility curve? Discuss its types with examples. | (4) | | | (b) What in catalysis? Give any three characteristics of catalyst with examples. | (4) | | | | 216-322-31000 |